Entrance Exam Topics for Candidates Applying to the Master's Degree Programs in Space Technologies Academic Year 2025/2026

- 1. Basics of Orbital Motion
 - Understanding Orbital Mechanics:
 - Why satellites stay in orbit and don't fall to Earth or drift away.
 - The role of gravity and motion in maintaining orbital paths.
 - Types of Orbits and Their Applications:
 - Low Earth Orbit (LEO), Geostationary Orbit, and Polar Orbits.
 - Uses in weather monitoring, GPS, and communications.
 - Principles of Motion in Space:
 - How speed and altitude affect a satellite's trajectory.
 - Why objects closer to Earth move faster in orbit.
 - Orbital Transfers:
 - Basic principles of how spacecraft change orbits.
- 2. Space Environment
 - Unique Conditions in Space:
 - Vacuum, extreme temperatures, and radiation.
 - Effects of microgravity on materials and biological systems.
 - Radiation in Space:
 - Sources of radiation (solar and cosmic).
 - Protection strategies for spacecraft and astronauts.
 - Space Debris:
 - Definition and causes.
 - Risks to satellites and space missions.
- 3. Spacecraft Basics
 - Satellite Components and Functions:
 - Solar panels, antennas, and onboard systems.
 - Roles in communication, navigation, and Earth observation.
 - Power Systems:
 - Use of solar panels and batteries.
 - Challenges in energy generation and storage.
 - Materials for Spacecraft:
 - Specialized materials for thermal and radiation protection.

- 4. Earth and Space Observations
 - Earth Monitoring:
 - Climate, weather, and natural disaster tracking.
 - Contributions to agriculture, navigation, and communication.
 - Planetary Exploration:
 - Missions to Mars, the Moon, and other celestial bodies.
 - Insights from Perseverance Rover, Artemis program, etc.
 - Space Telescopes:
 - Role of Hubble and James Webb in studying the universe.
- 5. Practical Problem-Solving in Space
 - Mission Challenges:
 - Handling power loss or trajectory changes.
 - Engineering solutions during space missions.
 - Human Space Travel:
 - Physical and psychological challenges of long-duration missions.
 - Mission Planning:
 - Balancing time, resources, and risks.
- 6. Global Importance of Space Exploration
 - Benefits for Earth:
 - Applications in communication, navigation, and research.
 - International Collaboration:
 - Joint missions like the International Space Station (ISS).
 - Treaties and regulations for peaceful exploration.
 - Sustainability in Space:
 - Addressing space debris and orbital cleanup efforts.
- 7. Foundations of Astronomy and Space Science
 - The Solar System:
 - Key facts about planets, moons, and celestial bodies.
 - Focus on Mars and the Moon as exploration targets.
 - Rocket Science:
 - Principles of launching rockets and deploying satellites.
 - Challenges of reaching and operating in space.
 - Gravity Beyond Earth:
 - How gravity functions on the Moon, Mars, and other bodies.

- 8. Foundations of Cell Biology and Biochemistry
 - Chemical Elements of Life:
 - Essential elements and their biological roles.
 - Biological Macromolecules:
 - Functions of proteins, DNA, and other macromolecules.
 - Molecular Biology:
 - Central dogma: DNA \rightarrow RNA \rightarrow Protein.
 - Enzymes as catalysts and hormones as messengers.
 - Cell Structure:
 - Prokaryotic vs. eukaryotic cells.
 - Organelles and their functions.
- 9. Human and Animal Physiology
 - Overview of Organ Systems:

• Musculoskeletal, Cardiovascular, Respiratory, Nervous, Immune, Endocrine, Digestive, and Reproductive systems.

- 10. Space Environment and Space Biology
 - Biological Impact of Space:
 - Effects of microgravity and radiation on cells and organisms.
 - Relevance to astronaut health and space medicine.
- 11. Planetary Habitability
 - Astrobiology Fundamentals:
 - Definition of habitable zones and influencing factors.
 - Icy worlds and extremophiles.
 - Importance of water in the search for life.
 - Overview of exoplanet discoveries.
- 12. Critical Thinking and Teamwork Skills
 - Collaboration in Space Missions:
 - Importance of teamwork and communication.
 - Problem-solving among engineers and scientists.
 - Decision-Making Under Pressure:
 - Simulated scenarios and emergency responses.
 - Ethics in Space Exploration:
 - Debates on asteroid mining and planetary colonization.
 - Balancing science with environmental and ethical concerns.

- 13. Logical and Analytical Thinking
 - Data Interpretation:
 - Analyzing satellite imagery and planetary data.
 - Problem Solving:
 - Calculations for travel time and satellite speeds.
 - Strategic Planning:
 - Designing space missions within budget and time constraints.
- 14. Broader Impacts of Space Exploration
 - Space Technologies in Daily Life:
 - Spin-offs like GPS, advanced materials, and medical innovations.
 - Future of Space Exploration:
 - Prospects for Moon bases, Mars missions, and private space ventures.